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SUMMARY

The present paper is the third article in a three-part series on anisotropic mesh adaptation and its ap-
plication to two- and three-dimensional, structured and unstructured meshes. This third paper concerns
the application of the full adaptation methodology to 2-D unstructured meshes, including all four mesh
modi�cation strategies presented in Part I, i.e. re�nement=coarsening, edge swapping and node move-
ment. The mesh adaptation procedure is validated through a careful monitoring of a single adaptation
step and of the solution–adaptation loop. Independence from the initial mesh and from the �ow solver
is illustrated. The e�ciency of the overall methodology is investigated on relevant laminar and turbulent
�ow benchmarks. Copyright ? 2002 John Wiley & Sons, Ltd.

KEY WORDS: edge-based error estimator; anisotropic mesh adaptation; unstructured meshes; coupled
solution–adaptation

1. INTRODUCTION

The general principles of a novel and cost-e�ective anisotropic mesh adaptation methodology
have been laid out in Part 1 [1] of the present four-part series on anisotropic mesh adaptation.
The three principal components of the anisotropic adaptation procedure, namely the error
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estimate, the mesh operations and the adaptation criterion, are based on element edges. This
permits to reorient the elements and prescribe a large degree of anisotropy along directions
with mild variation versus those with strong variation.
Part II [2] of the series addressed structured grids, for which only node movement was

allowed. A thorough validation of the mesh movement algorithm was undertaken. In par-
ticular, it has been shown that the algorithm is reversible. This means that, starting from
highly distorted triangular and rectangular grids de�ned on triangular or rectangular do-
mains, the algorithm is able to recover a perfectly uniform mesh if a uniform second deriva-
tive is speci�ed. Moreover, in Part II, numerical tests on standard benchmarks for com-
pressible �ows showed the cost-e�ectiveness of the present anisotropic adaptation
approach.
The adaptation of structured grids Part II [2] is restricted to only mesh movement, severely

restricting its potential. On the other hand, while the greater �exibility of unstructured meshes
has been trumpeted, this has usually been tempered by an accompanying loss of accuracy. In
Part III, the full power of the proposed adaptation method will be unleashed on unstructured
meshes, with all four mesh modi�cation strategies combined and driven by the same error
estimate. It will be shown that not only does mesh adaptation palliate the de�ciencies of
unstructured meshes but, surprisingly, the �nal adapted mesh and solution turn out to be the
same, independent of the starting mesh. An equally important surprise is that the mesh, and
the solution, at least in the tested runs, turn out to be independent of the solution algorithm
used. This demonstrates heuristically that many of the advantages of higher accuracy schemes
are noticeable mostly when meshes are inappropriate, but that adapted meshes are much less
impervious to showcasing such advantages. In other words, on a properly adapted grid, low
and high order schemes should give equally good solutions, that is the physically relevant
solution of the PDEs.
In Section 2 of the paper, the mesh adaptation procedure is validated through a care-

ful monitoring of a single adaptation step of the inner loop and of the coupled solution–
adaptation external loop. In this section, the independence from the initial mesh and from
the �ow solver is also illustrated. In Section 3, the e�ciency of the overall methodology is
investigated on relevant laminar and turbulent �ow benchmarks. In Section 4, the �oating-
point precision is shown to be the main limiting factor for two-dimensional (2-D) mesh
adaptation.

2. CONVERGENCE AND UNIQUENESS OF ADAPTED MESHES

For completeness, we recall the error estimator used in our mesh adaptation scheme. The
error e(xI − xJ ) on the edge connecting the node xI and xJ is given by

e(xI − xJ )=
∫ 1

0

√
(xI − xJ )TM(l)(xI − xJ ) dl (1)

where M(x) is the absolute value of the Hessian matrix H(x) of the solution, in practice an
approximation of this matrix obtained through a post-processing of the numerical solution uh.
Details are presented in Part I of this series [1].
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Moreover, we brie�y repeat the adaptation algorithm:

1. Smooth the mesh after estimating the error by alternatively:

(a) swapping all the edges until convergence
(b) moving all the nodes iteratively.

2. Adapt the mesh by iterating over the following loop:

(a) re�ne all edges above a threshold error estimate,
(b) swap the edges until convergence, then apply node movement,
(c) remove all nodes whose edges have an error estimate below a threshold value,
(d) swap the edges until convergence, then apply node movement.

3. Finally, smooth the mesh by repeating loop 1 before solving the equations again, starting
from an interpolated solution.

Given an error �eld over a given mesh, the algorithm adapts the mesh so that the size
and the orientation of the elements meet the speci�ed error level as uniformly as possible.
While all local modi�cation techniques tend to equi-distribute the edge error, they do it in
slightly di�erent ways. For instance, threshold values for re�nement and coarsening have
slightly di�erent impact, and hence have to be set so that both methods collaborate instead
of competing, with one local modi�cation technique eventually destroying the improvement
brought by the other. Typical threshold values for coarsening and re�nement are, respectively,
0.6 and 1.4 of the average edge error estimator over the mesh. For example, an edge is re�ned
if the value of the error estimator on that edge is more than 1.4 times the average edge error
estimator over the mesh. The closer to 1 these threshold values are, the more uniformly
distributed will be the error estimator, the better will be the mesh but, of course, the larger
will be the number of global adaptation loops needed to adapt the mesh.
To build con�dence in this method, one must check the convergence of the adaptation

algorithm itself: i.e. with a prescribed error �eld or, in other words, for a single step of the
solution–adaptation process, the last iterations of the loop 1–3 presented above must produce
negligible changes to the mesh. The next validation step is to show that the coupled solution–
adaptation process is convergent. At every �ow solution–mesh adaptation cycle, the mesh
and the error �eld are updated, building a sequence of meshes and solutions. Of course, it
must be veri�ed that the whole iteration process should reach a converged state. Moreover,
this converged state, if achievable, must be dictated only by the physics of the �ow, not
by the particular �ow solver or the initial mesh at hand. As with any iterative process, the
independence from the initial data, in our case the initial mesh, must be achieved. These are
all important questions that need to be addressed by any practical mesh adaptation method.
In the following, it will be demonstrated that the mesh adaptation converges at each single

step of an iteration, i.e. when the solution is frozen and adaptation is used only as a post-
processor, and also converges when it is coupled to the solver during iteration. We will
also demonstrate the independence of the adapted mesh from the solver used and also its
independence from the initial mesh.

2.1. Convergence of an adaption cycle, with solution frozen

We �rst investigate the e�ciency of the adaptation loop 1–3 for a single step of the solution–
adaptation process. On a given initial mesh, a �ow solution is computed once and this ‘frozen’
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Figure 1. The error estimator is derived from second derivatives of the Mach number �eld shown here.

solution is used to calculate the matrix M in Equation (1) on the initial or background
mesh. Starting from the initial mesh, a new mesh is iteratively generated with the loop 1–3,
computing the error estimator on the edges of the adapted mesh using Equation (1), but with
the matrix M reinterpolated from the background mesh. As the matrix M is frozen on the
background mesh, the error �eld is prescribed and the loop 1–3 should involve less and less
work as iterations proceed and the variance of the edge error estimator over the adapted mesh
decreases.
A test case is presented for which a mesh is adapted to a viscous laminar �ow around a

NACA 0012 pro�le with a freestream Mach number of 2.0 and a Reynolds number of 10 000
(Figure 1). The Navier–Stokes equations for compressible �ows are solved, namely

@�
@t
+∇ · (�u) = 0

�
@u
@t
+ �u · ∇u+∇p−∇ · � = 0

�
@e
@t
+ �u · ∇e+ p∇ · u −∇u : �−∇ · (�∇e) = 0

where �, u, p and e stand for the density, velocity, pressure and internal energy of the �uid,
respectively. The variable � is the usual viscous stress tensor for a compressible �uid (with
the number Re−1 hidden in) and � is the renormalized heat di�usion coe�cient. No-slip and
adiabatic wall conditions are used on the body.
This test case, and laminar �ow in particular, are chosen to avoid any idiosyncrasy of

turbulence modelling implementation. The adapted mesh has no resemblance to the initial one
(Figure 2), despite the fact that it is deduced from it using successive local alterations. The
number of alterations is represented in Table I at each iteration of the overall adaptation loop
and indicates that changes become negligible after only 5 iterations.
With the convergence demonstrated, the next step is to characterize the converged state.

The statistical graph of Figure 3 indicates that the edge error estimate concentrates around
the target error, with a more even distribution, as adaptation proceeds. In particular, the ratio
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Figure 2. Initial mesh (also used as the background mesh to support the error estimator) and
converged adapted mesh, with solution frozen.

Table I. Convergence of local improvements during one mesh adaptation.

Re�nement Coarsening Swapping

Edges % Nodes % Edges %

1671 15.32 2225 41.54 2697 24.73
721 7.77 290 7.53 102 1.10
62 0.59 69 1.90 45 0.43
25 0.24 25 0.70 17 0.16
19 0.18 14 0.39 14 0.13
9 0.09 13 0.36 11 0.10
10 0.10 10 0.28 8 0.08
8 0.08 8 0.22 10 0.10
12 0.11 10 0.28 2 0.02
7 0.07 5 0.14 4 0.04

Figure 3. Distribution of the edge error over the mesh at di�erent
iterations of the mesh adaptation process.
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Figure 4. Evolution of the extremum values and the variance of the edge
error during one cycle of mesh adaptation.

between the maximum and minimum values decreases from 5000 to 3 (Figure 4, left) and
the standard deviation is reduced by two orders of magnitude (Figure 4, right).
Even if the convergence indicators are not absolutely monotonic (re�nement results in a

decrease of the minimum error, and coarsening in an increase of the maximum) the algorithm
of Section 2 converges towards a mesh that can be considered optimal for the �ow solution
at hand.

2.2. Convergence of the coupled solution–adaptation cycle

Now that we have build some con�dence in the adaptation method of loop 1–3, we next
investigate the convergence of the coupled solution–adaptation process. At each solution–
adaptation cycle, a background mesh and its initial solution are provided. The �ow solver
�rst computes the best �ow solution on that background mesh, for example by reducing the
residual of the discrete Navier–Stokes equations. This new solution and the background mesh
are sent to the mesher, namely loop 1–3, that generates a new adapted mesh and the �ow
solution reinterpolated on that mesh. These constitute the output of the solution–adaptation
cycle and the input of the next cycle. The whole process can be initiated with the mesh
obtained through a mesh generator and an unphysical constant �ow solution. In this section,
we monitor the solution–adaptation cycles for a typical test case, being understood that this
test case is representative of all the experiments done so far.
The topology of the meshes changes in a discrete and radical way. As a consequence, apart

from a close monitoring of the coupling strategy, no common metric or norm can be used
to quantify the convergence of the meshes. To assess the coupling strategy, we will consider
the convergence of the number of nodes on successive adapted meshes as an indication of
the convergence of the coupled problem. Since the number of nodes of an adapted mesh is
controlled by the target error, if the number of nodes stabilizes, it is an indication that the
coupling strategy converges to a mesh with a prescribed global error on the solution.
The example of Section 2.1 above is again used to illustrate this point. Figure 5 shows

the number of nodes of the successive meshes as the solution–adaptation loop proceeds. An
indication of convergence is the leveling-o� of the number of nodes after a certain number
of remeshing steps. The meshes at steps A, B, C, and D marked in Figure 5 are presented
in Figure 6.
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Figure 5. Total number of nodes versus adaptation cycles for the �ow over
a NACA 0012 at Ma=2:0 and Re=10 000.

Figure 6. Adapted meshes after 1, 4, 20 and 100 iterations (left-right, top-bottom)
of the coupled solution–adaptation loop.

Initially, the number of nodes increases, followed by a gradual decrease to the asymptotic
value. Since the few �rst meshes are not well adapted, the solution is polluted with spurious
oscillations. An over-re�nement of the mesh results in order to de�ne the salient features of
the �ow. When the solution improves, the adaptation gradually reduces the number of nodes,
bringing to bear all the techniques presented above.
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2.3. Independence of adapted solution from initial mesh

It is desirable to verify whether the mesh adaptation is unique. The question asked is whether
for �ow over or in a given geometry, there is a unique mesh that should be used for each
freestream condition? In addition, whether the current mesh adaptation can yield that mesh?
Intuitively, the answer is yes, as the scheme has been shown to converge for a single adaptation
step as a post-processor and also when tightly coupled in a solution–adaptation loop.
To demonstrate this uniqueness property conclusively, the same problem is solved on vastly

di�erent meshes. The �ow conditions are similar to those of the previous section. In Figure 7,
a common mesh is used, with re�nement around the airfoil, embedded in a much coarser
mesh away from the airfoil. The �gure also shows a very coarse mesh in which only 18
points are used on the airfoil. Finally, it shows an intentionally counter-intuitive mesh, with
thousands of nodes in the upper half and only three points on the body in the lower half,
although the problem is symmetric. Each of the three �gures also shows the corresponding
results, using FVM.
It is interesting to follow in Figures 8–10, the evolution of adapted meshes and solutions

started from the three meshes. The �gures indicate a nearly similar �nal mesh and an identical
�nal solution. It is even more interesting to view in Figure 11, the progressive improvement of
the three initial solutions towards a very sharp and crisp �nal solution. In Figure 12 the Mach
contours are compared: they fall on top of one another. Figure 13 shows the initial and �nal
distributions of the friction coe�cient. The left side shows that the initial distributions are
quite di�erent, and all incorrect. The right side of the �gure shows how the three superposed
results are indistinguishable. The percentage of edges having a given error (log 10 of error)
is represented in Figure 14. The initial three meshes have a very large error band. After
adaptation, the three solutions give the same Gaussian error distribution whose maximum
error has been reduced an order of magnitude from the initial one.
This example convincingly demonstrates that there is reason to hope that mesh-independent

�ow solutions can be obtained in a reasonable time and without considerable e�ort, by starting
from a coarse and arbitrary mesh and let the adaptation procedure ‘generate’ the correct mesh.
This may also then lead to user-independent results as the meshing decisions are taken away
from the user, who in the �rst place has no way of guessing, let alone knowing, what is the
most appropriate mesh for a given geometry, at various �ow conditions. It will also mean that
results will be reproducible, as a user wanting to duplicate some previous results has only
to specify the error level desired, since the mesh corresponding to it is unique and will be
obtained as part of the solution. A rational basis of comparison and benchmarking between
commercial codes can also ensue, as the methodology allows one to compare them on equal
footing, ridding them of any proprietary bells and whistles that may have been used to make
them converge, often to only a qualitative answer.

2.4. Independence of �nal adapted solution from solver

In this section, the current solution–adaptation strategy is shown to lead to independence of
the �nal result from the �ow solver used, i.e. di�erent solvers give (almost) identical �nal
results. One solver may be more e�cient in terms of precision and computing time, but the
�nal meshes statistically have the same node distribution and nearly the same number of
nodes. As a result, the �nal adapted solutions obtained with the di�erent solvers are identical,
as demonstrated here for laminar �ows with low to moderate Reynolds numbers.
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Figure 7. Solution on a �ne mesh (top), a coarse mesh (middle) and an
arbitrary, counter-intuitive mesh (bottom).

The test problem, solved by FEM and FVM codes, is compared. The two codes are used as
black boxes, with no modi�cation to their source. The �nite element code is that of Boivin [3]:
it solves the non-conservative form of the Navier–Stokes equations, for the primitive variables
�, u, v and T . It uses mixed triangular elements (P1=P1-iso-P2) with a ‘nearly’ quadratic
interpolation of velocities, i.e. with velocity expressed linearly over triangles but such that
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Figure 8. Meshes and solutions at adaptation steps 0, 1, 2, 5 and 10, starting from the �ne mesh.
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Figure 9. Meshes and solutions at adaptation steps 0, 1, 2, 5 and 10, starting from the coarse mesh.
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Figure 10. Meshes and solutions at adaptation steps 0, 1, 2, 5 and 10,
starting from the counter-intuitive mesh.
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Figure 11. Comparison between the initial and adapted solutions (125 adaptation steps), for the �ne,
coarse and counter-intuitive meshes.

each of the four velocity triangles form a large one at the vertices of which density and
temperature are de�ned. Local time stepping is used with an implicit Gear scheme of second
order to advance in time. The set of linear equations at each time step is solved by a non-linear
GMRES solver. The code is programmed in double precision.
The �nite volume code is NSC2KE, developed by Bijan Mohammadi [4] and available

on the Web. It solves the Navier–Stokes equations in conservative form for the conservative
variables (�; �u; �v and �E) and uses linear interpolation for all. Several solvers are available,
among them a Roe scheme, an Osher scheme and kinematic schemes of orders 1 and 2. An
explicit four-step Runge–Kutta scheme is used to advance in time, with local time stepping.
The code is written in single precision.
Results are presented at Re=500 because, at such a low Reynolds number, the shock is

thick and the convergence behaviour is easily seen. The conclusion remains the same at higher
Reynolds numbers.
Having established that the algorithms are substantially di�erent and involve many features

that by themselves merit a comparative study (FVM versus FEM, equal order interpolation
versus mixed elements, primitive versus conservative variables, di�erent arti�cial viscosity,
etc.), Figure 15 shows the large di�erences in the two solutions when the codes are �rst run
on the initial mesh. Of course, one can probably tweak the parameters (arti�cial viscosity
coe�cients, etc.) in both solvers to improve the solutions, but still some di�erences will
remain. On the other hand, Figure 16 compares the �nal adapted solution from the two codes.
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Figure 12. Superposition of the three �nal solutions at the leading edge.

Figure 13. Cf on initial meshes (left) and �nal meshes (right) for the three test cases.

Surprisingly, they are not only similar; they are for all intents and purposes identical. A
comparison of the Mach contours shows them to be amazingly similar. A blowup of the
solution at the leading edge shows, on the left side of Figure 17 the superposition of the
Mach number contours, and on the right side a split screen showing in the top half the FEM
upper solution and in the bottom half the FVM solution. Their juncture at the centreline
hardly shows a kink. In Figure 18, a horizontal cut at the leading edge shows that the shocks
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Figure 14. Percentage of the element edges versus the error estimate over the edges for the three test
cases, at the �rst and �nal mesh adaptation steps.

Figure 15. FEM (left) and FVM (right) solutions on the initial mesh (Ma=2, Re=500).

obtained by both codes are identical. Derived quantities such as the pressure and friction
coe�cients are compared in Figure 19. One must be reminded that the �gure on left is the
superposition of four curves (one each for FEM, FVM, suction and pressure surfaces), while
the second �gure is the superposition of two results.
It must also be mentioned that the mixed �nite element code of Boivin did not require any

upwinding to be added, and it can therefore be assumed that the adapted mesh lowered any
upwinding needed in the Mohammadi code way down as the mesh was adapting, proving at
the end that a more elaborate upwinding scheme will show a di�erence on unadapted meshes
but may make little or no di�erence on an adapted one.
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Figure 16. Superposition of FEM and FVM solutions (Ma=2, Re=500).

Figure 17. Zoom on the leading edge. Left: superposition. Right: (top) FEM, (bottom) FVM.

The preceding example is at least convincing enough to create further interest in researching
this point. It brings one to question the major e�ort of the last decade into more re�ned
algorithms, all the while ignoring the impact of the meshes on the numerical solution.

3. VALIDATION WITH LAMINAR AND TURBULENT FLOWS

A number of viscous �ow test cases will be presented spanning subsonic to hypersonic Mach
numbers.
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Figure 18. Horizontal cut through the shock wave for FEM and FVM.

Figure 19. Comparison of Cp (left) and Cf (right) for FEM and FVM.

3.1. Laminar �ow

One of the problems all CFD developers have to contend with is that of spurious oscillations.
Generally speaking, oscillations may appear during the solution of �ow equations for two
reasons. First, the approximation scheme may be unstable. For example, while solving the
Stokes or Navier–Stokes equations, an equal-order approximation of the velocity and pressure
gives rise to spurious oscillations (see, e.g. Reference [5] or [6]). As long as the discretization
scheme does not satisfy the inf–sup condition of stability, some terms must be added to the
equations to eliminate oscillations and ensure convergence. Oscillations can also appear in
convection dominated �ow computations, even with a stable approximation. They are mainly
caused by meshes that are too coarse to represent the convected solution in areas of
steep gradients. The simplest cure is to add a di�usive term into the equations. Arti�cial
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viscosity and upwinding methods are often combined with oscillation detectors to selectively
add di�usion, while preventing excessive smearing of the solution.
Mesh adaptation proves to be a good way to altogether reduce the amount of arti�cial

viscosity needed. More than that, we postulate that any arti�cial viscosity is bad viscosity and
that very little, and sometimes none, should be needed, provided that:

(1) the discretization scheme is stable,
(2) and the mesh can be adapted enough to capture physical features.

Of course, adaptation has its own limitations and cannot cure all spurious oscillations, but
it has a stabilizing e�ect. This concept is nicely illustrated by the following example: a
compressible viscous solution is computed by the Boivin [3] code on a NACA 0012 at a
freestream Mach number of 2 and Reynolds numbers ranging from 125 to 32 000.
The mesh adaptation algorithm makes it possible to compute external viscous supersonic

�ows with absolutely no arti�cial viscosity, at least up to a Reynolds number of 32 000. We
did not try to further increase the Reynolds number because the �ow computation becomes
prohibitively expensive, due to the unsteadiness of the wake at Reynolds above 32 000 (Figures
20 and 21).
To show that the computed solutions contain only the amount of natural viscosity prescribed

by the �uid, without any extra arti�cial viscosity, cuts are taken through the boundary layer
and through the shock wave (Figures 22 and 23, left). In Figure 22 (right), it can be seen
that the thickness of the boundary layer varies exactly as the square root of the Reynolds
number and in Figure 23 (right), that the slope of the viscous shock is exactly proportional
to the Reynolds number. This is in perfect agreement with the laws of �uid mechanics and
shows that, using adapted meshes, the added numerical viscosity can be nearly nil and the
viscosity nearly equal to the physical one.

3.2. Turbulent �ow

In the previous sections, the mesh optimization methodology was shown to be capable of
generating meshes for �ows with shocks. In this section, it will be applied to automatically
generate meshes for turbulent �ow calculations.
Meshes for turbulent �ow computations usually cluster the nodes in a region of thickness

1×10−3 chord close to the wall. Also, the �rst node o� the wall should be around 1×10−5–
1×10−6, even closer when a low Reynolds number turbulence model is used. The handmade
meshes that satisfy these requirements usually are very stretched, dense across the boundary
layer and sparse along the body. It is essentially the same kind of meshes used to track
shocks, but parallel to the walls.
With the results presented below, we only intent to show that our mesh adaptation captures

the features of the turbulent �ow boundary layers using highly anisotropic triangles. All
our computations arc based on the �–� turbulence model using a wall-law boundary layer
formulation, as implemented in the code NSC2KE developed by Bijan Mohammadi [4].

3.2.1. AGARD AR138 test case. The test case AGARD AR138 is used to test the mesh
adaptation methodology for turbulent �ow. This test case is a NACA 0012 at Ma=0:5,
Re=2:89×106 and AoA=0◦. Figure 24 shows the adapted mesh and Mach contours on
an 11 116-node mesh with a distance from the wall for the �rst layer of about 1:0×10−5.
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Figure 20. Adapted meshes for �ow at Ma=2:0 and Re=125; 250; 500;
1000; 2000; 4000; 8000; 16 000 and 32 000.

Figure 25 shows a zoom of the mesh and the Mach contours in the boundary layer and
Figure 26 shows a comparison of the experimental and numerical pressure coe�cients. This
test case demonstrates that the mesh optimization methodology is suitable for turbulent �ows,
although it might be argued that Euler would also have given a good pressure distribution.
E�ectively, the wake is predictable when the angle of attack is zero and, since there is no
separation of the boundary layer, there exist some formulae to predict its thickness. Then,
it is easy to build a C-grid around the wing with a speci�ed node distribution such that
turbulent �ow is easily computed. But, in a more general case, with complex geometries
such as multiple element airfoils, the boundary layer and the wake are less predictable and a
handmade turbulent �ow mesh is more di�cult to generate. The test case in the next section
will demonstrate the suitability of the mesh adaptation methodology in these more complex
situations.
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Figure 21. Mach contours for �ow at Ma=2:0 and Re=125; 250; 500;
1000; 2000; 4000; 8000; 16 000 and 32 000.

3.2.2. 2-D car. The following test case is a 2-D generic car scaled down by a factor of
2.5. The wind tunnel experiments are at Re=3×106 and the exact Mach number for the
experiments is not speci�ed, but Ma=0:1 seems a reasonable choice for a car. The car is
10 cm over a �oor that begins 0.88 chord length before the leading edge of the car. The �ow
is characterized by a duct �ow between the car and the �oor, by a separated region over the
rear window which has a large recirculation. This situation, while still geometrically simple,
is much more complex to mesh than the NACA 0012 of the previous section. The reason
is that, contrarily to the AGARD AR138 test case, the �ow features are less predictable and
one is left with making arbitrary decisions.
Figure 27 shows a general view of the adapted mesh and Mach contours for the car over

a moving ground. The mesh has 11 072 nodes with the smallest distance to the wall around
5×10−6. Figure 28 shows the initial mesh and Mach contours. This mesh has 10 050 nodes
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Figure 22. Cut of the local Mach number through the boundary layer at
x=0:3 (left) non-dimensionalization of the cut (right).

Figure 23. Cut of the local Mach number through the bow shock along the
x-axis (left). Maximum slope of the local Mach number over the cut through

the viscous shock wave versus Reynolds number (right).

and was automatically generated. On the same �gure, the adapted mesh with 13 648 nodes
clearly shows small and stretched triangles in the thin boundary layer close to the body.
Figure 29 shows a zoom of the mesh and the corresponding Mach contours between the car

and �oor, demonstrating clearly the advantages of anisotropy. As can be seen in Figure 30,
the comparison between the experimental and numerical pressure coe�cients, before and after
adaptation, demonstrates the e�ectiveness of the method.

4. ROUNDOFF ERROR AS A LIMITING FACTOR

To illustrate a limiting factor of the method, we use test case III.3 of the Workshop on
Hypersonic Flows for Reentry Problem [7] held in Antibes, France in 1990 and 1991. The
geometry of this test case is a �at plate 0:25m long, with a 0:10m ramp at 15◦. The leading
edge is a 15◦ downward ramp and the thickness of the body is 0:02m (Figure 31). The wind
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Figure 24. Adapted mesh and Mach contours for NACA 0012 at
Ma=0:5; Re=2:89×106 and AoA=0◦:

Figure 25. Zoom on the boundary layer for test case AGARD AR138.
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Figure 26. Comparison of the experimental (+) and numerical (solid) pressure
coe�cients for test case AGARD AR138.

Figure 27. Adapted mesh and Mach contours for 2-D generic car over a moving
ground at Ma=0:1 and Re=3×106.

tunnel experiments [7] at T∞=50K; Twall=290K; Ma=10 and Re=9:1×106 show a laminar
non-reactive �ow �eld and therefore, modelling with the laminar Navier–Stokes equations is
well suited. This is a di�cult test case because of thin boundary layers and shock-boundary
layer interaction arising from high Reynolds and Mach numbers. The �ow is computed using
the Boivin FEM code [3].
Local Mach number contours are shown in Figure 31. To get this solution, we start from

an arbitrary coarse mesh and a uniform �ow initial solution. With this initial mesh and solu-
tion, the solver needs quite a bit of additional arti�cial viscosity. As the solution–adaptation
iterations proceed, the arti�cial viscosity is progressively decreased. For Re¡105, one is able
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Figure 28. Initial and adapted meshes, and the corresponding Mach contours, around the ‘leading edge’
of a 2-D generic car over a �at plate at Ma=0:1 and Re=3×106.

Figure 29. Zoom of the mesh and Mach contours between the �oor and a
2-D generic car at Ma=0:1 and Re=3×106.
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Figure 30. Comparison of the experimental and numerical pressure
coe�cients without and with mesh adaptation.

Figure 31. Flat plate and 15◦ ramp of the EHDB test case III.3. The �gure
shows Mach contours from 0.0 to 10.0 with �Ma=0:5.
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Figure 32. Zoom on the leading edge of the mesh and Mach contours.

Figure 33. Zoom through mesh at the lower shock, and resulting Mach contours.

to completely eliminate the arti�cial viscosity. For Re¿105, there always remains the need
for some arti�cial viscosity.
Figures 32 and 33 show some features of the mesh and the solution for Re=106, while

Figure 32 is a zoom at the leading edge. There are large triangles before the shock and very
small triangles within the shock and at the leading edge. The area ratio of the largest to the
smallest triangle, in the whole domain, is 1014. With the standard h-method adaptation, which
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consists of dividing a triangle into four triangles, 23 re�nement steps would have been needed
to reach the same level of adaptation. The mesh is therefore considered strongly adapted.
The ratio between the length of the longest edge to the length of the shortest edge is

107. It is important, though stunning, to think that in the chosen metric, all these edges are
approximately of the same length. The shortest edge is at the leading edge and its length
is around 10−8 m. While this makes sense for a geometry with a perfect singularity at the
leading edge, the real test object in a wind tunnel could not be made to have such a sharp
leading edge and therefore, some discrepancy can be anticipated with the experimental data.
The left-hand side picture in Figure 33 is a zoom of the mesh on the lower shock and

the right-hand side picture shows the corresponding isovalues of the Mach number. Fifteen
Mach contours are shown from Mach 10 (at the bottom) to Mach 5 (at the top). The theory
states that the thickness of the shock is inversely proportional to the Reynolds number. With
Re¿106, the aspect ratio of the triangles in the shock reaches 10−6. The shock is crisp,
perfectly uniform and oscillation-free because the mesh was built to correspond to the solution
that it should represent.
Had the mesh been isotropic, there would be oscillations because the edges would not be

aligned with the shock. And, in passing, there would also have been thousands and thousands
more triangles!
For the Reynolds number (9:1×106) of this test case, the slope of the viscous shock

should be 107 and the shape of the triangles should be approximately inversely proportional.
Such stretched triangles cannot be constructed in double precision because the three nodes of
the triangle would be so close to a straight line that the calculation of some characteristic
functions on the triangle, for example the shape factor of the triangle in the mesher or
oscillation limiters in the solver, would be swamped by roundo� error. So, for high Reynolds
numbers, we cannot build the mesh to represent the solution of the equations if co-ordinates
are only in double precision, and therefore some arti�cial viscosity is needed to capture the
solution on such a non-optimal mesh. We believe that at such a conjuncture the approach
has reached a (temporary) limit for 2-D �ows. Pushing the limit of the stretching factor to
machine accuracy is certainly feasible in double precision, but this would require a careful
analysis of the �oating-point error propagation for each formula based on the triangle vertex
co-ordinates in the mesher and the solver.

5. CONCLUSIONS

An anisotropic mesh adaptation method has been proposed. An edge-based error estimate
drives four local mesh modi�cation techniques, namely re�nement=coarsening, edge swapping
and node movement, to obtain elongated elements along the directional features of the �ow,
such as shocks, boundary layers, slip lines, wakes, etc.
The full power of the method has been demonstrated for 2-D unstructured meshes, using a

number of numerical examples. In particular, it was shown that:

(1) Given an input mesh and a numerical solution on that mesh, the combination of the
four modi�cation techniques leads to a convergent mesh modi�cation algorithm.

(2) The iterative coupling of the mesh adaptation and the �ow solution converge to a �nal
mesh.
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(3) This �nal mesh depends on the �ow conditions but is independent, except for slight
variations, from the �ow solver and from the initial mesh.

The method has also been proven to be e�cient for laminar and turbulent �ows over several
geometries. For 2-D steady �ows, the main limitation of the method seems to be the roundo�
error caused the �oating-point representation of the mesh point co-ordinates.
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